Skip to content

xpander-ai/xpander-sdk

Repository files navigation

xpander.ai SDK

Python 3.9+ License: MIT Documentation PyPI Version Downloads

The official Python SDK for xpander.ai - a powerful Backend-as-a-Service (BaaS) platform for building, deploying, and managing AI agents at scale.

πŸš€ Overview

xpander.ai SDK provides comprehensive tools for:

  • Agent Management: Create, configure, and manage AI agents
  • Task Execution: Handle complex task workflows and execution
  • Tools Repository: Integrate external tools and services
  • Knowledge Bases: Manage and search knowledge repositories
  • Event Handling: Event-driven programming with decorators
  • Real-time Monitoring: Track agent performance and execution

πŸ“¦ Installation

pip install xpander-sdk

With Optional Dependencies

# For Agno framework support (2.0+)
pip install xpander-sdk[agno]

# For development
pip install xpander-sdk[dev]

πŸ”§ Quick Start

1. Configuration

from xpander_sdk import Configuration

# Using environment variables (recommended)
config = Configuration()

# Or explicit configuration
config = Configuration(
    api_key="your-api-key",
    organization_id="your-org-id",
    base_url="https://inbound.xpander.ai"
)

2. Basic Agent Operations

from xpander_sdk import Agents, Agent, Tasks, AgentDeploymentType

# Initialize agents module
agents = Agents(configuration=config)

# List all agents
agent_list = await agents.alist()

# Load existing agent
agent = await agents.aget("agent-id")

# Create and execute a task
task = await agent.acreate_task(
    prompt="Help me analyze this data",
    file_urls=["https://example.com/data.csv"]
)

3. Task Management

from xpander_sdk import Tasks, Task

# Initialize tasks module
tasks = Tasks(configuration=config)

# Load and manage tasks
task = await tasks.aget("task-id")
await task.aset_status(AgentExecutionStatus.Running)
await task.asave()

# Retrieve task activity log
activity_log = await task.aget_activity_log()
for message in activity_log.messages:
    print(f"{message.role}: {message.content.text}")

4. Tools Integration

from xpander_sdk import register_tool, ToolsRepository

# Register a local tool
@register_tool
def check_weather(location: str) -> str:
    """Check weather for a given location."""
    return f"Weather in {location}: Sunny, 25Β°C"

# Register a tool with graph synchronization
@register_tool(add_to_graph=True)
async def analyze_data(data: list, analysis_type: str) -> dict:
    """Analyze data from multiple sources."""
    return {
        "analysis_type": analysis_type,
        "data_points": len(data),
        "status": "completed"
    }

# Use tools repository
tools = ToolsRepository(configuration=config)
weather_tool = tools.get_tool_by_id("check_weather")
result = await weather_tool.ainvoke(
    agent_id="agent-id",
    payload={"location": "New York"}
)

5. Knowledge Base Operations

from xpander_sdk import KnowledgeBases, KnowledgeBase

# Initialize knowledge bases
kb_module = KnowledgeBases(configuration=config)

# Create knowledge base
kb = await kb_module.acreate(
    name="Company Docs",
    description="Internal documentation"
)

# Add documents
documents = await kb.aadd_documents([
    "https://example.com/doc1.pdf",
    "https://example.com/doc2.txt"
])

# Search knowledge base
results = await kb.asearch(
    search_query="product pricing",
    top_k=5
)

6. Event-Driven Programming

from xpander_sdk import on_task, Events

# Basic task handler
@on_task
async def handle_task(task):
    print(f"Processing task: {task.id}")
    # Task processing logic here
    task.result = "Task processed successfully"
    return task

# Task handler with configuration
@on_task(configuration=config)
def sync_task_handler(task):
    print(f"Handling task synchronously: {task.id}")
    task.result = "Sync processing complete"
    return task

πŸ“š Core Modules

Module Description Documentation
Agents Agent creation, management, and execution Agents Guide
Tasks Task lifecycle and execution management Tasks Guide
ToolsRepository External tools and integrations Tools Guide
KnowledgeBases Knowledge management and search Knowledge Guide
Events Event-driven programming Events Guide
Backend Agent runtime arguments for frameworks Backend Guide

πŸ”„ Async/Sync Support

The SDK provides both asynchronous and synchronous interfaces:

# Asynchronous (recommended for production)
agent = await Agent.aload("agent-id")
task = await agent.acreate_task(prompt="input data")

# Synchronous (convenient for scripts)
agent = Agent.load("agent-id")
task = agent.create_task(prompt="input data")

πŸ“– Advanced Examples

Multi-Agent Orchestration

# Load multiple specialized agents
agents_list = await agents.alist()
data_agent = await agents.aget("data-agent-id")
writer_agent = await agents.aget("writer-agent-id")

# Chain agent executions
analysis_task = await data_agent.acreate_task(prompt="Analyze sales data")
report_task = await writer_agent.acreate_task(
    prompt=f"Write a report based on: {analysis_task.result}"
)

Tool Integration with MCP Servers

from xpander_sdk import MCPServerDetails, MCPServerType

# Configure MCP server
mcp_server = MCPServerDetails(
    name="data-server",
    type=MCPServerType.STDIO,
    command="python",
    args=["-m", "mcp_server"],
    env={"API_KEY": "your-key"}
)

# MCP servers are configured at the platform level
# and tools become available through ToolsRepository

Streaming Task Execution

# Create a task with event streaming enabled
task = await agent.acreate_task(
    prompt="complex analysis task",
    events_streaming=True
)

# Stream events from the task
async for event in task.aevents():
    print(f"Event Type: {event.type}")
    print(f"Event Data: {event.data}")

Authentication Events Callback

Handle authentication events in real-time. This callback is triggered only for authentication flows (e.g., MCP OAuth requiring user login).

You can use both approaches simultaneously - decorated handlers will always be invoked, and you can also pass an explicit callback for additional handling.

You can provide the callback in two ways:

Option 1: Direct Function

from xpander_sdk import Backend
from xpander_sdk.modules.agents.sub_modules.agent import Agent
from xpander_sdk.modules.tasks.sub_modules.task import Task, TaskUpdateEvent
from agno.agent import Agent as AgnoAgent

# Define event callback (async or sync)
async def my_event_callback(agent: Agent, task: Task, event: TaskUpdateEvent):
    """Called for authentication events only"""
    # event.type will always be "auth_event"
    print(f"Authentication required: {event.data}")
    # Display login URL or handle OAuth flow

# Get args with callback
backend = Backend(configuration=config)
args = await backend.aget_args(
    agent_id="agent-123",
    task=my_task,
    auth_events_callback=my_event_callback
)

Option 2: Decorator (Auto-registered)

from xpander_sdk import Backend, on_auth_event
from xpander_sdk.modules.agents.sub_modules.agent import Agent
from xpander_sdk.modules.tasks.sub_modules.task import Task, TaskUpdateEvent
from agno.agent import Agent as AgnoAgent

# Use decorator - auto-registers globally
@on_auth_event
async def handle_auth(agent: Agent, task: Task, event: TaskUpdateEvent):
    # event.type will always be "auth_event"
    print(f"Authentication required for {agent.name}")
    print(f"Auth data: {event.data}")

# Decorated handler is automatically invoked - no need to pass it
backend = Backend(configuration=config)
args = await backend.aget_args(
    agent_id="agent-123",
    task=my_task
)

Option 3: Combine Both

from xpander_sdk import Backend, on_auth_event

# Global handler for all auth events
@on_auth_event
async def log_auth(agent, task, event):
    print(f"[GLOBAL] Auth event for {agent.name}")

# Additional one-time handler
async def custom_handler(agent, task, event):
    print(f"[CUSTOM] Specific handling for this call")

# Both handlers will be invoked
args = await backend.aget_args(
    agent_id="agent-123",
    auth_events_callback=custom_handler  # Optional additional callback
)

# Use with Agno
agno_agent = AgnoAgent(**args)
result = await agno_agent.arun(
    input="Process this data",
    stream=True
)

Task Activity Monitoring

from xpander_sdk import Task
from xpander_sdk.models.activity import (
    AgentActivityThreadMessage,
    AgentActivityThreadToolCall,
    AgentActivityThreadReasoning
)

# Load a completed task
task = await Task.aload("task-id")

# Get detailed activity log
activity_log = await task.aget_activity_log()

# Analyze messages between user and agent
for message in activity_log.messages:
    if isinstance(message, AgentActivityThreadMessage):
        print(f"{message.role}: {message.content.text}")
    elif isinstance(message, AgentActivityThreadToolCall):
        # Tool call
        print(f"Tool: {message.tool_name}")
        print(f"Payload: {message.payload}")
        print(f"Result: {message.result}")
    elif isinstance(message, AgentActivityThreadReasoning):
        # Reasoning step
        print(f"Reasoning ({message.type}): {message.thought}")

# Synchronous version
task = Task.load("task-id")
activity_log = task.get_activity_log()

Local Task Testing

from xpander_sdk.modules.tasks.models.task import LocalTaskTest, AgentExecutionInput
from xpander_sdk.models.shared import OutputFormat
from xpander_sdk import on_task

# Define a local test task
local_task = LocalTaskTest(
    input=AgentExecutionInput(text="What can you do?"),
    output_format=OutputFormat.Json,
    output_schema={"capabilities": "list of capabilities"}
)

# Test with local task
@on_task(test_task=local_task)
async def handle_test_task(task):
    task.result = {
        "capabilities": [
            "Data analysis",
            "Text processing",
            "API integration"
        ]
    }
    return task

πŸ§ͺ Testing

# Run tests
pytest tests/

# Run with coverage
pytest tests/ --cov=xpander_sdk

# Run specific test
pytest tests/test_agents.py::test_agent_creation

πŸ—οΈ Architecture

xpander_sdk/
β”œβ”€β”€ core/                   # Core API client and base classes
β”œβ”€β”€ models/                 # Pydantic models and configurations
β”œβ”€β”€ modules/
β”‚   β”œβ”€β”€ agents/            # Agent management
β”‚   β”œβ”€β”€ tasks/             # Task execution
β”‚   β”œβ”€β”€ tools_repository/  # Tools and integrations
β”‚   β”œβ”€β”€ knowledge_bases/   # Knowledge management
β”‚   β”œβ”€β”€ events/            # Event handling
β”‚   └── backend/           # Agent runtime arguments for frameworks
└── utils/                 # Utility functions

πŸ”’ Authentication

The SDK supports multiple authentication methods:

Environment Variables (Recommended)

export XPANDER_API_KEY="your-api-key"
export XPANDER_ORGANIZATION_ID="your-org-id"
export XPANDER_BASE_URL="https://inbound.xpander.ai" # Optional
export XPANDER_AGENT_ID="your-agent-id" # Optional for Backend module

Configuration Object

config = Configuration(
    api_key="your-api-key",
    organization_id="your-org-id"
)

From File

# .env file
XPANDER_API_KEY=your-api-key
XPANDER_ORGANIZATION_ID=your-org-id

# Python code
from dotenv import load_dotenv
load_dotenv()
config = Configuration()

🏒 Self-Hosted Deployment

If you're using a self-hosted xpander.ai deployment, configure the SDK to point to your Agent Controller endpoint.

Important: Use the Agent Controller API key generated during Helm installation, not your xpander.ai cloud API key.

Configuration

# Set environment variables
export XPANDER_API_KEY="your-agent-controller-api-key"  # From Helm installation
export XPANDER_ORGANIZATION_ID="your-org-id"
export XPANDER_BASE_URL="https://agent-controller.my-company.com"

Or configure explicitly:

from xpander_sdk import Configuration

config = Configuration(
    api_key="your-agent-controller-api-key",  # From Helm installation
    organization_id="your-org-id",
    base_url="https://agent-controller.my-company.com"
)

Using with Agno Framework

from xpander_sdk import Backend, Configuration
from agno.agent import Agent

# Configure for self-hosted
config = Configuration(
    api_key="your-agent-controller-api-key",  # From Helm installation
    organization_id="your-org-id",
    base_url="https://agent-controller.my-company.com"
)

# Initialize Backend with self-hosted config
backend = Backend(configuration=config)

# Create agent - it will use your self-hosted infrastructure
agno_agent = Agent(**backend.get_args(agent_id="agent-123"))

# Run agent
result = await agno_agent.arun(
    input="What can you help me with?",
    stream=True
)

Complete Self-Hosted Example

import asyncio
from xpander_sdk import Configuration, Agent

async def main():
    # Configure for self-hosted deployment
    config = Configuration(
        api_key="your-agent-controller-api-key",  # From Helm installation
        organization_id="your-org-id",
        base_url="https://agent-controller.my-company.com"
    )

    # Load agent from self-hosted deployment
    agent = await Agent.aload("agent-123", configuration=config)
    print(f"Agent: {agent.name}")

    # Create and execute task
    task = await agent.acreate_task(
        prompt="Analyze Q4 sales data",
        file_urls=["https://example.com/sales-q4.csv"]
    )
    print(f"Task created: {task.id}")
    print(f"Status: {task.status}")

if __name__ == "__main__":
    asyncio.run(main())

Important: Make sure your base_url points to the Agent Controller endpoint (e.g., https://agent-controller.{your-domain}), not the root domain.

πŸ“– Full Guide: Self-Hosted Configuration Documentation

πŸ”„ Error Handling

from xpander_sdk.exceptions import ModuleException

try:
    agent = await Agent.aload("invalid-agent-id")
except ModuleException as e:
    print(f"Error {e.status_code}: {e.description}")

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/{base_branch}/amazing-feature)
  3. Commit your changes (git commit -m 'feat/chore/fix: Add amazing feature')
  4. Push to the branch (git push origin feature/{base_branch}/amazing-feature)
  5. Open a Pull Request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ†˜ Support


Built with ❀️ by the xpander.ai team

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 8