Skip to content

racinmat/depth-voxelmap-estimation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

200 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Single image depth estimation by dilated deep residual convolutional neural network and soft-weight-sum inference

This repository contains source code for trainingf neural networks in Matěj Račinský's master thesis, available here.

Also, this repo is an implementation of this paper: https://arxiv.org/pdf/1705.00534.pdf

Explained better here: https://arxiv.org/pdf/1708.02287.pdf

Runs:

  • 2018-03-08--16-41-31 initial with correct implementation, with batch normalization, no weights decay, with weights regularization
  • 2018-03-09--17-23-46 hopefully correct learning rate decay, xavier initialization, with weights regularization
  • 2018-03-10--01-02-25 xavier, no weights regularization
  • 2018-03-10--11-03-09 same as above, 40 images, trying to overfit
  • 2018-03-11--02-04-09 only 100 depth bins, using softmax also for inference, learning rate 1e-4 (as above), decay is *0.9
  • 2018-03-11--14-40-26 same as above, but initial learning rate is 1e-5
  • 2018-03-11--15-30-10 same as above, but initial learning rate is 1e-4, decay is correct, *0.1 (dividing by 10)
  • 2018-03-11--16-59-14 same as above, but loss from the other paper, Estimating Depth from Monocular Images... tried
  • 2018-03-13--03-52-42 whole nyu dataset with the above mentioned setup
  • 2018-03-19--04-14-04 whole GTA dataset, but with incorrect depth loaded
  • 2018-03-26--19-25-51 whole GTA dataset, with fixed depth loading and preprocessing
  • 2018-03-28--13-55-48 trying to overfit on 40 GTA images, batch size = 4
  • 2018-03-28--22-24-23 again, overfitting, with correct metrics and ground truth depth dumping
  • 2018-03-29--00-14-08 again, overfitting, with correct metrics, ground truth depth dumping, and hopefully synced input and output images in tensorboard
  • 2018-03-29--12-41-37 whole GTA dataset, now with correct metrics and tensorboard visualization, and correctly split training and testing set
  • 2018-04-01--00-25-06 learning rate decay after 30k iterations, Adam optimizer (as in all previous cases), on 1080 Ti
  • 2018-04-01--00-26-49 learning rate decay after 30k iterations, Nadam optimizer, on Titan X
  • 2018-04-01--00-32-39 Adam optimizer, epsilon=1e-5, on titan Xp
  • 2018-04-02--02-51-28 Nadam, epsilon=1e-5
  • 2018-04-02--02-52-07 Nadam, epsilon=1e-2
  • 2018-04-02--02-59-31 Nadam, epsilon=1e-8 (default), no decaying learning rate, still 1e-4
  • 2018-04-05--09-15-19 momentum optimizer with nesterov, momentum=0.999
  • 2018-04-05--09-22-22 momentum optimizer with nesterov, momentum=0.9
  • 2018-04-22--21-01-54 training voxelmaps, momentum optimizer with nesterov, momentum=0.9
  • 2018-04-23--08-15-23 training voxelmaps, Nadam, e=1e-8
  • 2018-04-29--22-35-13 training voxelmaps, l2 loss, Nadam, e=1e-8, voxelmaps in view, depths linear in view (voxelmaps and depths linear in view, and forever onwards)
  • 2018-04-30--10-46-45 training voxelmaps, l2 loss, momentum with nesterov, momentum=0.9
  • 2018-05-01--00-20-51 training voxelmaps, logistic loss from paper, nadam
  • 2018-05-01--01-03-01 training voxelmaps, logistic loss from paper, nadam, new deconv layer, accidentally batchsize=1
  • 2018-05-04--22-57-49 training voxelmaps, logistic loss from paper correctly (with weights), nadam, new metrics
  • 2018-05-04--23-03-46 training voxelmaps, logistic loss from paper correctly (with weights), SGD with nesterov, new metrics (from now on, logistic loss is correct)
  • 2018-05-06--00-03-04 training voxelmaps, softmax loss, SGC with nesterov, new metrics - not good
  • 2018-05-06--00-05-58 training voxelmaps, softmax loss, nadam, new metrics - not good
  • 2018-05-06--10-47-19 training voxelmaps, logistic loss, with new deconv(kernel=5,stride=1), nadam, new metrics - no activation, useless
  • 2018-05-06--10-48-08 training voxelmaps, logistic loss, with new deconv, nadam, new metrics - no activation, useless
  • 2018-05-07--17-22-10 training voxelmaps, logistic loss, with new deconv(kernel=5,stride=1,num_out=50,activation=lrelu), nadam, new metrics
  • 2018-05-08--23-37-07 training voxelmaps, logistic loss, with new deconv(kernel=2,stride=2,num_out=50,activation=lrelu), nadam, new metrics
  • 2018-05-11--00-10-54 training voxelmaps, logistic loss, with new deconv(kernel=2,stride=2,num_out=200,activation=lrelu), nadam, new metrics

dgs s momentem a nesteroff momentem je lepší než adam In train-nyu and test-nyu, data from train are split in ratio 80:20

report of accuracies: +--------------------+----------------------+----------------------+---------------------+----------------------+----------------------+ | treshold_1.25 | mean_rel_err | rms | rms_log | log10_err | name | +--------------------+----------------------+----------------------+---------------------+----------------------+----------------------+ | 0.98328125 | 0.044797583685980906 | 0.025788567528874328 | 0.03040171146706071 | 0.018311002519395617 | 2018-03-11--23-23-32 | | 0.9387152777777777 | 2.1360649956597224 | 1.6739856387785428 | 0.3718028906000468 | 0.10152558220757378 | 2018-03-11--15-30-10 | | 0.9305729166666666 | 2.229178466796875 | 1.7460586196130414 | 0.37347099263959904 | 0.10319221496582032 | 2018-03-11--14-40-26 | +--------------------+----------------------+----------------------+---------------------+----------------------+----------------------+

Tensorboard: inspecting it single run: tensorboard --inspect --logdir=logs/2018-03-28--10-46-41

inspecting single value in run: tensorboard --inspect --logdir=logs/2018-03-28--10-46-41 --tag=cost

some insights: titan X is slower than 1080 ti, roughly 2 times, Titan Xp is only slightly faster than 1080 Ti.

by htp -u racinmat I find my processes F5 - tree visualization by arrow I select process and kill it by F9

filter for cost and metrics: cost|positive_rate|iou|dist_on

About

voxelmap estimation master thesis

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •