Skip to content

Commit 681cb1f

Browse files
committed
Update limits.html
1 parent a724700 commit 681cb1f

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

content/limits.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -354,12 +354,12 @@ <h1>Limits</h1>
354354
\begin{eqnarray}
355355
\lim_{z\rightarrow z_0}\big[c\cdot f(z)\big] &amp;=&amp; c\cdot \lim_{z\rightarrow z_0} f(z) \text{ with }
356356
c\in\C, \label{limitconst}\\
357-
\lim_{z\rightarrow z_0}\big[f(z)+g(z)\big]=w_1+w_2,\label{limitsum}\\
358-
\lim_{z\rightarrow z_0}\big[f(z)g(z)\big]=w_1w_2;\label{limitmult}
357+
\lim_{z\rightarrow z_0}\big[f(z)+g(z)\big]&amp;=&amp;w_1+w_2,\label{limitsum}\\
358+
\lim_{z\rightarrow z_0}\big[f(z)g(z)\big]&amp;=&amp;w_1w_2;\label{limitmult}
359359
\end{eqnarray}
360360
and, if $w_2\neq 0,$
361361
\begin{eqnarray}\label{limitdiv}
362-
\lim_{z\rightarrow z_0}\frac{f(z)}{g(z)}=\frac{w_1}{w_2}.
362+
\lim_{z\rightarrow z_0}\frac{f(z)}{g(z)}&amp;=&amp;\frac{w_1}{w_2}.
363363
\end{eqnarray}
364364
</p>
365365

0 commit comments

Comments
 (0)