Skip to content

Commit a724700

Browse files
committed
Fixed issue in limits section
1 parent 38f7d9e commit a724700

File tree

2 files changed

+33
-20
lines changed

2 files changed

+33
-20
lines changed

contenido/limites.html

Lines changed: 14 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -168,8 +168,10 @@ <h1>Límites</h1>
168168
$|f(z)-w_0|\lt\varepsilon$ y $|f(z)-w_1|\lt\varepsilon.$
169169
Elegimos un punto
170170
$z$ diferente de $z_0$ (porque $f$ está definida en una vecindad borrada de
171-
$z_0$). Entonces, usando la desigualdad del triángulo,
172-
$$|w_0-w_1|\leq |w_0-f(z)|+|f(z)-w_1|\lt2\varepsilon.$$
171+
$z_0$). Entonces, usando la desigualdad del triángulo, tenemos que
172+
<div class="scroll-wrapper">
173+
$$2 \epsilon = |w_0-w_1| = |w_0 - f(z) + f(z) - w_1| \leq |w_0-f(z)|+|f(z)-w_1|\lt2\varepsilon.$$
174+
</div>
173175
Pero esto es una contradicción. Por lo tanto $w_0=w_1.$
174176
</div>
175177

@@ -180,18 +182,21 @@ <h1>Límites</h1>
180182
</p>
181183
<p>
182184
<strong>Discusión:</strong>
183-
Consideremos $\delta = 1.$ Así que $0\lt\left| z-z_0\right|\lt\delta=1$ implica
185+
Consideremos $\delta \leq 1.$ Así que $0\lt\left| z-z_0\right|\lt\delta$ implica
184186
</p><div class="scroll-wrapper">
185-
\begin{eqnarray*}
186-
\left| z^2-z_0^2\right|&amp;=&amp;\left| z-z_0\right|\left| z+z_0\right|\\&amp;\lt&amp;\left|
187-
z-z_0+2z_0\right|\\&amp;\lt&amp; \left| z-z_0\right|+2\left|z_0\right|\\
188-
&amp;\lt&amp;1+2\left|z_0\right|.
187+
\begin{eqnarray*}
188+
\left| z^2-z_0^2\right|&amp;=&amp;\left| z-z_0\right|\left| z+z_0\right|\\
189+
&amp;\lt&amp; \delta \left| z+z_0\right|\\
190+
&amp;\lt&amp; \delta \left| z-z_0+2z_0\right|\\
191+
&amp;\lt&amp; \delta \big( \left| z-z_0\right|+2\left|z_0\right|\big) \\
192+
&amp;\lt&amp;\delta \big(1+2\left|z_0\right|\big).
189193
\end{eqnarray*}
190194
</div>
191195

192-
Ahora, si $\delta=\dfrac{\varepsilon}{1+2\left|z_0\right|},$ entonces $0\lt\left| z-z_0\right|\lt\delta$
196+
Tomemos el mínimo entre $\delta =1 $ or $\delta=\dfrac{\varepsilon}{1+2\left|z_0\right|}.$
197+
Por lo que $0\lt\left| z-z_0\right|\lt\delta$
193198
implica que
194-
$$\left| z^2-z_0^2\right|\lt 1+2\left|z_0\right|\lt\varepsilon.$$
199+
$$\left| z^2-z_0^2\right|\lt\varepsilon.$$
195200
Esto significa que
196201
$$\left| z^2-z_0^2\right|\lt\varepsilon \quad\text{siempre y cuando}\quad 0\lt\left| z-z_0\right|\lt\delta$$
197202
donde $\delta=\min\left\{1,\dfrac{\varepsilon}{1+2\left|z_0\right|}\right\}.$

content/limits.html

Lines changed: 19 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -156,14 +156,19 @@ <h1>Limits</h1>
156156
</div>
157157
<div class="proof">
158158

159-
Suppose that $\lim_{z\rightarrow z_0}f(z)=w_0$ and $\lim_{z\rightarrow z_0}f(z)=w_1$ with
160-
$w_0\neq w_1.$ Let $2\varepsilon =|w_0-w_1|,$ so that $\varepsilon &gt;0.$
159+
Suppose that $\ds \lim_{z\rightarrow z_0}f(z)=w_0$
160+
and $\ds \lim_{z\rightarrow z_0}f(z)=w_1$ with
161+
$w_0\neq w_1.$ Let $2\varepsilon =|w_0-w_1|,$ so
162+
that $\varepsilon &gt;0.$
161163
There is a $\delta&gt;0$ such that $0\lt|z-z_0|\lt\delta$ implies that
162164
$|f(z)-w_0|\lt\varepsilon$ and $|f(z)-w_1|\lt\varepsilon.$ Choose a point
163165
$z$ different to $z_0$ (because $f$ is defined in a deleted
164-
neighborhood of $z_0$). Then, using the triangle inequality,
165-
$$|w_0-w_1|\leq |w_0-f(z)|+|f(z)-w_1|\lt2\varepsilon.$$
166-
But this is a contradiction. Thus $w_0=w_1.$ $\quad \blacksquare$
166+
neighborhood of $z_0$). Then, using the triangle inequality,
167+
we have
168+
<div class="scroll-wrapper">
169+
$$2 \epsilon = |w_0-w_1| = |w_0 - f(z) + f(z) - w_1| \leq |w_0-f(z)|+|f(z)-w_1|\lt2\varepsilon.$$
170+
</div>
171+
But this is a contradiction. Thus $w_0=w_1.$
167172
</div>
168173

169174

@@ -173,18 +178,21 @@ <h1>Limits</h1>
173178
</p>
174179
<p>
175180
<strong>Discussion:</strong>
176-
Let's take $\delta = 1.$ So $0\lt\left| z-z_0\right|\lt\delta=1$ implies that
181+
Consider $\delta \leq 1.$ So $0\lt\left| z-z_0\right|\lt\delta$ implies that
177182
</p><div class="scroll-wrapper">
178183
\begin{eqnarray*}
179-
\left| z^2-z_0^2\right|&amp;=&amp;\left| z-z_0\right|\left| z+z_0\right|\\&amp;\lt&amp;\left|
180-
z-z_0+2z_0\right|\\&amp;\lt&amp; \left| z-z_0\right|+2\left|z_0\right|\\
181-
&amp;\lt&amp;1+2\left|z_0\right|.
184+
\left| z^2-z_0^2\right|&amp;=&amp;\left| z-z_0\right|\left| z+z_0\right|\\
185+
&amp;\lt&amp; \delta \left| z+z_0\right|\\
186+
&amp;\lt&amp; \delta \left| z-z_0+2z_0\right|\\
187+
&amp;\lt&amp; \delta \big( \left| z-z_0\right|+2\left|z_0\right|\big) \\
188+
&amp;\lt&amp;\delta \big(1+2\left|z_0\right|\big).
182189
\end{eqnarray*}
183190
</div>
184191

185-
Now, if $\delta=\dfrac{\varepsilon}{1+2\left|z_0\right|},$ then $0\lt\left| z-z_0\right|\lt\delta$
192+
Now, take $\delta = 1 $ or $\delta=\dfrac{\varepsilon}{1+2\left|z_0\right|},$
193+
whichever is smaller. Then $0\lt\left| z-z_0\right|\lt\delta$
186194
implies that
187-
$$\left| z^2-z_0^2\right|\lt 1+2\left|z_0\right|\lt\varepsilon.$$
195+
$$\left| z^2-z_0^2\right|\lt\varepsilon.$$
188196
This means that
189197
$$\left| z^2-z_0^2\right|\lt\varepsilon \quad\text{whenever}\quad 0\lt\left| z-z_0\right|\lt\delta$$
190198
where $\delta=\min\left\{1,\dfrac{\varepsilon}{1+2\left|z_0\right|}\right\}.$

0 commit comments

Comments
 (0)