@@ -156,14 +156,19 @@ <h1>Limits</h1>
156156 </ div >
157157 < div class ="proof ">
158158
159- Suppose that $\lim_{z\rightarrow z_0}f(z)=w_0$ and $\lim_{z\rightarrow z_0}f(z)=w_1$ with
160- $w_0\neq w_1.$ Let $2\varepsilon =|w_0-w_1|,$ so that $\varepsilon >0.$
159+ Suppose that $\ds \lim_{z\rightarrow z_0}f(z)=w_0$
160+ and $\ds \lim_{z\rightarrow z_0}f(z)=w_1$ with
161+ $w_0\neq w_1.$ Let $2\varepsilon =|w_0-w_1|,$ so
162+ that $\varepsilon >0.$
161163 There is a $\delta>0$ such that $0\lt|z-z_0|\lt\delta$ implies that
162164 $|f(z)-w_0|\lt\varepsilon$ and $|f(z)-w_1|\lt\varepsilon.$ Choose a point
163165 $z$ different to $z_0$ (because $f$ is defined in a deleted
164- neighborhood of $z_0$). Then, using the triangle inequality,
165- $$|w_0-w_1|\leq |w_0-f(z)|+|f(z)-w_1|\lt2\varepsilon.$$
166- But this is a contradiction. Thus $w_0=w_1.$ $\quad \blacksquare$
166+ neighborhood of $z_0$). Then, using the triangle inequality,
167+ we have
168+ < div class ="scroll-wrapper ">
169+ $$2 \epsilon = |w_0-w_1| = |w_0 - f(z) + f(z) - w_1| \leq |w_0-f(z)|+|f(z)-w_1|\lt2\varepsilon.$$
170+ </ div >
171+ But this is a contradiction. Thus $w_0=w_1.$
167172 </ div >
168173
169174
@@ -173,18 +178,21 @@ <h1>Limits</h1>
173178 </ p >
174179 < p >
175180 < strong > Discussion:</ strong >
176- Let's take $\delta = 1.$ So $0\lt\left| z-z_0\right|\lt\delta=1 $ implies that
181+ Consider $\delta \leq 1.$ So $0\lt\left| z-z_0\right|\lt\delta$ implies that
177182 </ p > < div class ="scroll-wrapper ">
178183 \begin{eqnarray*}
179- \left| z^2-z_0^2\right|&=&\left| z-z_0\right|\left| z+z_0\right|\\&\lt&\left|
180- z-z_0+2z_0\right|\\&\lt& \left| z-z_0\right|+2\left|z_0\right|\\
181- &\lt&1+2\left|z_0\right|.
184+ \left| z^2-z_0^2\right|&=&\left| z-z_0\right|\left| z+z_0\right|\\
185+ &\lt& \delta \left| z+z_0\right|\\
186+ &\lt& \delta \left| z-z_0+2z_0\right|\\
187+ &\lt& \delta \big( \left| z-z_0\right|+2\left|z_0\right|\big) \\
188+ &\lt&\delta \big(1+2\left|z_0\right|\big).
182189 \end{eqnarray*}
183190 </ div >
184191
185- Now, if $\delta=\dfrac{\varepsilon}{1+2\left|z_0\right|},$ then $0\lt\left| z-z_0\right|\lt\delta$
192+ Now, take $\delta = 1 $ or $\delta=\dfrac{\varepsilon}{1+2\left|z_0\right|},$
193+ whichever is smaller. Then $0\lt\left| z-z_0\right|\lt\delta$
186194 implies that
187- $$\left| z^2-z_0^2\right|\lt 1+2\left|z_0\right|\lt \varepsilon.$$
195+ $$\left| z^2-z_0^2\right|\lt\varepsilon.$$
188196 This means that
189197 $$\left| z^2-z_0^2\right|\lt\varepsilon \quad\text{whenever}\quad 0\lt\left| z-z_0\right|\lt\delta$$
190198 where $\delta=\min\left\{1,\dfrac{\varepsilon}{1+2\left|z_0\right|}\right\}.$
0 commit comments