Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 14 additions & 9 deletions monai/transforms/croppad/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,19 +96,24 @@ def pad_nd(
return _np_pad(img, pad_width=to_pad, mode=mode, **kwargs)
try:
_pad = _np_pad
if mode in {"constant", "reflect", "edge", "replicate", "wrap", "circular"} and img.dtype not in {
torch.int16,
torch.int64,
torch.bool,
torch.uint8,
}:
if mode in {"constant", "reflect", "edge", "replicate", "wrap", "circular"}:
# Try PyTorch pad for these modes; fallback to NumPy on error.
_pad = _pt_pad
return _pad(img, pad_width=to_pad, mode=mode, **kwargs)
call_kwargs = dict(kwargs)
if mode != "constant" and "value" in call_kwargs:
raise ValueError("'value' argument is only valid when mode='constant'")
return _pad(img, pad_width=to_pad, mode=mode, **call_kwargs)
except NotImplementedError:
# PyTorch does not support this combination, fall back to NumPy
return _np_pad(img, pad_width=to_pad, mode=mode, **call_kwargs)
except (ValueError, TypeError, RuntimeError) as err:
if isinstance(err, NotImplementedError) or any(
# PyTorch may raise generic errors for unsupported modes/dtypes or kwargs.
# Since there are no stable exception types for these cases, we fall back
# to NumPy by matching known error message patterns.
if any(
k in str(err) for k in ("supported", "unexpected keyword", "implemented", "value")
):
return _np_pad(img, pad_width=to_pad, mode=mode, **kwargs)
return _np_pad(img, pad_width=to_pad, mode=mode, **call_kwargs)
raise ValueError(
f"{img.shape} {to_pad} {mode} {kwargs} {img.dtype} {img.device if isinstance(img, torch.Tensor) else None}"
) from err
Expand Down
105 changes: 105 additions & 0 deletions tests/transforms/croppad/test_pad_nd_dtypes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
# Copyright (c) MONAI Consortium
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

In MONAI we use unittest and parameterized packages for tests and not pytest, specifically we use test classes and methods for unit tests rather than functions. Please reformulate these tests to use these packages according the style of other tests that are present here. It might make sense to add your tests to an existing file rather than a new one, have a look at existing files to see if it does make sense that way.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tests for pad_nd dtype support and backend selection.
Validates PyTorch padding preference and NumPy fallback behavior.
"""
from __future__ import annotations

import unittest
from unittest.mock import Mock, patch

from parameterized.parameterized import parameterized

import torch

import monai.transforms.croppad.functional as F
from monai.transforms.croppad.functional import pad_nd


class TestPadNdDtypes(unittest.TestCase):
def test_pad_uses_pt_for_bool(self):
"""Test that pad_nd uses PyTorch backend for bool dtype in constant mode."""
img = torch.ones((1, 4, 4), dtype=torch.bool)
to_pad = [(0, 0), (1, 1), (2, 2)]
with patch.object(F, "_pt_pad", wraps=F._pt_pad) as mock_pt, patch.object(F, "_np_pad", wraps=F._np_pad) as mock_np:
out = pad_nd(img, to_pad, mode="constant", value=0)

self.assertTrue(mock_pt.called)
self.assertFalse(mock_np.called)
self.assertEqual(out.dtype, img.dtype)
self.assertEqual(out.shape, (1, 6, 8))

def test_pad_falls_back_to_np_if_pt_raises(self):
"""Test that pad_nd falls back to NumPy when PyTorch raises NotImplementedError."""
img = torch.ones((1, 4, 4), dtype=torch.bool)
to_pad = [(0, 0), (1, 1), (2, 2)]
with (
patch.object(F, "_pt_pad", new=Mock(side_effect=NotImplementedError("no"))) as mock_pt,
patch.object(F, "_np_pad", wraps=F._np_pad) as mock_np,
):
out = pad_nd(img, to_pad, mode="constant", value=0)

self.assertTrue(mock_pt.called)
self.assertTrue(mock_np.called)
self.assertEqual(out.dtype, img.dtype)
self.assertEqual(out.shape, (1, 6, 8))

@parameterized.expand([
torch.bool,
torch.int8,
torch.int16,
torch.int32,
torch.int64,
torch.uint8,
torch.float32,
])
def test_pad_dtype_no_error_and_dtype_preserved(self, dtype):
"""Test that pad_nd handles various dtypes without error and preserves dtype."""
img = torch.ones((1, 4, 4), dtype=dtype)
to_pad = [(0, 0), (1, 1), (2, 2)]
out = pad_nd(img, to_pad, mode="constant", value=0)

self.assertEqual(out.shape, (1, 6, 8))
self.assertEqual(out.dtype, img.dtype)

@parameterized.expand([
("constant", torch.bool),
("constant", torch.int8),
("constant", torch.float32),
("reflect", torch.bool),
("reflect", torch.int8),
("reflect", torch.float32),
("replicate", torch.bool),
("replicate", torch.int8),
("replicate", torch.float32),
])
def test_pad_multiple_modes_dtype_preserved(self, mode, dtype):
"""Test that pad_nd preserves dtype across multiple padding modes."""
img = torch.ones((1, 4, 4), dtype=dtype)
to_pad = [(0, 0), (1, 1), (2, 2)]

kwargs = {"value": 0} if mode == "constant" else {}
out = pad_nd(img, to_pad, mode=mode, **kwargs)

self.assertEqual(out.shape, (1, 6, 8))
self.assertEqual(out.dtype, img.dtype)

def test_value_with_non_constant_mode_raises(self):
"""Test that pad_nd raises ValueError when 'value' is provided with non-constant mode."""
img = torch.ones((1, 4, 4))
to_pad = [(0, 0), (1, 1), (2, 2)]
with self.assertRaises(ValueError):
pad_nd(img, to_pad, mode="reflect", **{"value": 0})


if __name__ == "__main__":
unittest.main()
Loading