Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 29 additions & 1 deletion basics.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2691,7 +2691,35 @@ \section{Universal properties}
\end{ex}

\begin{ex}\label{ex:sigma-eq-components-neq}
We have seen that $\bfalse \neq \btrue$ (\cref{rmk:false-neq-true}). Show that, nevertheless, $(\bool, \bfalse) =_{\sm{A:\type}A} (\bool, \btrue)$ (see \cref{rmk:sigma-equality-extraction}).
We have seen that $\bfalse \neq \btrue$ (\cref{rmk:true-neq-false}). Show that, nevertheless, $(\bool, \bfalse) =_{\sm{A:\type}A} (\bool, \btrue)$ (see \cref{rmk:sigma-equality-extraction}).
\end{ex}

\begin{ex}
Suppose that we have a type family analogous to identity:

\[ \mathsf{Id}' : \prd{A:\UU} A \to A \to \UU \]

with a function analogous to reflexivity:

\[ \mathsf{refl}' : \prd{A:\UU}{a:A} \mathsf{Id}'_A(a, a) \]

and a function analogous to based path induction:

\[
\mathsf{ind}_{\mathsf{Id}'} :
\prd{A:\UU}
\prd{a:A}
\prd{C:\prd{x:A} \mathsf{Id}'_A(a, x) \to \UU}
\prd{c:C(a, \mathsf{refl}'_a)}
\sm{f:\prd{x:A} \prd{p:\mathsf{Id}'_A(a, x)} C(x, p)}
\mathsf{Id}'_{C(a, \mathsf{refl}'_a)}(f(a, \mathsf{refl}'_a), c)
\]

Show that $\mathsf{Id}' = \mathsf{Id}$. Deduce in particular that

\[ \prd{A,B:\UU} \eqv{(\mathsf{Id}'_{\UU}(A, B))}{(\eqv{A}{B})} \]

Hence, although we postulated univalence for the built-in identity type family $\mathsf{Id}$, it automatically applies to any type family with the same basic properties.
\end{ex}

% Local Variables:
Expand Down
Loading