Large initial energy RMSE when finetuning #191
Unanswered
tomdemeyere
asked this question in
Q&A
Replies: 1 comment
-
|
Have you drawn parity plot using 7net-l3i5 at your training set? I see two
possibilities here
1. Some outlier in the training data
2. Huge energy shift
If the cause is 1. Check the outlier data whether DFT calculation is not
converted or it has too high energy that physically meaningless
In the case of 2, which functional or pseudopotential do you use? 7net l3i5
trained on PBE52
You can get data for the parity plot from
`sevenn_inference 7net-l3i5 {path to your training dataset}`
…-----------------------------------------------------------------
*Yutack Park*
Ph.D. Candidate
Materials Data and Informatics Lab.
Department of Materials Science and Engineering
Seoul National University
*E-mail:* ***@***.*** ***@***.***>
*Homepage:* http://mtcg.snu.ac.kr
-----------------------------------------------------------------
2025년 3월 21일 (금) 오전 6:16, Tom Demeyere ***@***.***>님이 작성:
I started to finetune the SevenNet-l3i5 model with a dataset containing ~
3000 structures of slabs and nanoparticles. The original energy RMSE is
extremely high (2500 eV/atom) while forces are ok (400 meV/Å). Is there
something I don't understand with energy references?
Here is my finetune.yaml:
model:
act_gate:
e: silu
o: tanh
act_radial: silu
act_scalar:
e: silu
o: tanh
channel: 128
chemical_species: auto
cuequivariance_config: {}
cutoff: 5.0
cutoff_function:
cutoff_function_name: poly_cut
poly_cut_p_value: 6
interaction_type: nequip
irreps_manual:
- 128x0e
- 128x0e+64x1e+32x2e+32x3e
- 128x0e+64x1e+32x2e+32x3e
- 128x0e+64x1e+32x2e+32x3e
- 128x0e+64x1e+32x2e+32x3e
- 128x0e
is_parity: false
lmax: 3
lmax_edge: -1
lmax_node: -1
num_convolution_layer: 5
radial_basis:
bessel_basis_num: 8
radial_basis_name: bessel
readout_as_fcn: false
self_connection_type: linear
train_denominator: false
train_shift_scale: true
train_avg_num_neigh : true
use_bias_in_linear: false
use_modal_node_embedding: false
use_modal_output_block: false
use_modal_self_inter_intro: false
use_modal_self_inter_outro: false
weight_nn_hidden_neurons:
- 64
- 64
train:
random_seed: 1
is_train_stress: False
epoch: 100
force_loss_weight : 100.0
stress_loss_weight: 0.0
loss: huber
loss_param:
delta: 0.01
optimizer: adamw
optim_param:
lr: 0.0002
scheduler: 'exponentiallr'
scheduler_param:
gamma: 0.99
csv_log: log.csv
error_record:
- ['Energy', 'RMSE']
- ['Force', 'RMSE']
- ['Stress', 'RMSE']
- ['TotalLoss', 'None']
loss_param: {}
#scheduler: onecyclelr
#scheduler_param:
# anneal_strategy: cos
# div_factor: 25.0
# epochs: 2
# final_div_factor: 10000.0
# max_lr: 0.0002
# pct_start: 0.005
# total_steps: 1007534
#stress_loss_weight: 1.0e-06
train_shuffle: true
use_weight: false
per_epoch: 10
continue:
reset_optimizer: True
reset_scheduler: True
reset_epoch: True
checkpoint: /iridisfs/scratch/ba3g18/IridisX/toms_playground/sevenn/smaller/checkpoint_l3i5.pth
use_statistic_values_of_checkpoint: False
data:
batch_size: 8
compute_statistics: true
#use_species_wise_shift_scale: True
shift: 'elemwise_reference_energies'
data_format: ase
data_format_args: {}
load_trainset_path: training_set_no_duplicates_final.xyz
load_validset_path: validation_set.xyz
preprocess_num_cores: 1
use_modal_wise_scale: false
use_modal_wise_shift: false
—
Reply to this email directly, view it on GitHub
<#191>, or unsubscribe
<https://github.com/notifications/unsubscribe-auth/A2RQY2Y5SY7L6ALJACNALST2VMV35AVCNFSM6AAAAABZOPZBBGVHI2DSMVQWIX3LMV43ERDJONRXK43TNFXW4OZYGEYTCMRRGE>
.
You are receiving this because you are subscribed to this thread.Message
ID: ***@***.***>
|
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
Uh oh!
There was an error while loading. Please reload this page.
-
I started to finetune the
SevenNet-l3i5model with a dataset containing ~ 3000 structures of slabs and nanoparticles. The original energy RMSE is extremely high (2500 eV/atom) while forces are ok (400 meV/Å). Is there something I don't understand with energy references?Here is my
finetune.yaml:Beta Was this translation helpful? Give feedback.
All reactions