|
| 1 | +--- |
| 2 | +Title: '.sign()' |
| 3 | +Description: 'Returns a tensor with the sign of each element, indicating whether it is negative, zero, or positive.' |
| 4 | +Subjects: |
| 5 | + - 'Computer Science' |
| 6 | + - 'Data Science' |
| 7 | +Tags: |
| 8 | + - 'Deep Learning' |
| 9 | + - 'Methods' |
| 10 | + - 'Programming' |
| 11 | + - 'PyTorch' |
| 12 | +CatalogContent: |
| 13 | + - 'intro-to-py-torch-and-neural-networks' |
| 14 | + - 'paths/data-science' |
| 15 | +--- |
| 16 | + |
| 17 | +The **`.sign()`** method in PyTorch returns a new [tensor](https://www.codecademy.com/resources/docs/pytorch/tensors) with the sign of each element from the input tensor. It returns -1 for negative values, 0 for zero, and 1 for positive values. This method is commonly used in gradient-based optimization, activation functions, and mathematical operations where the direction or polarity of values matters. |
| 18 | + |
| 19 | +## Syntax |
| 20 | + |
| 21 | +```pseudo |
| 22 | +torch.sign(input, *, out=None) |
| 23 | +``` |
| 24 | + |
| 25 | +**Parameters:** |
| 26 | + |
| 27 | +- `input` (Tensor): The input tensor whose signs are to be computed. |
| 28 | +- `out` (optional): A tensor to store the output. Must have the same shape as `input`. |
| 29 | + |
| 30 | +**Return value:** |
| 31 | + |
| 32 | +The `.sign()` method returns a new tensor containing the sign of each element in the `input` tensor. Unless the `out` parameter is specified, the result is a new tensor. |
| 33 | + |
| 34 | +## Example |
| 35 | + |
| 36 | +This example demonstrates how to use the `.sign()` method on a tensor containing positive, negative, and zero values: |
| 37 | + |
| 38 | +```py |
| 39 | +import torch |
| 40 | + |
| 41 | +# Create a tensor with mixed values |
| 42 | +x = torch.tensor([1.5, -2.3, 0.0, 3.7, -0.5]) |
| 43 | + |
| 44 | +# Compute the sign of each element |
| 45 | +y = torch.sign(x) |
| 46 | + |
| 47 | +print(f"Original tensor: {x}") |
| 48 | +print(f"Sign tensor: {y}") |
| 49 | +``` |
| 50 | + |
| 51 | +This example results in the following output: |
| 52 | + |
| 53 | +```shell |
| 54 | +Original tensor: tensor([ 1.5000, -2.3000, 0.0000, 3.7000, -0.5000]) |
| 55 | +Sign tensor: tensor([ 1., -1., 0., 1., -1.]) |
| 56 | +``` |
| 57 | + |
| 58 | +In this example: |
| 59 | + |
| 60 | +- Positive values (1.5, 3.7) return 1. |
| 61 | +- Negative values (-2.3, -0.5) return -1. |
| 62 | +- Zero (0.0) returns 0. |
0 commit comments