Skip to content

Commit becabfa

Browse files
committed
Address Copilot feedback
1 parent 69aeb89 commit becabfa

File tree

6 files changed

+16
-25
lines changed

6 files changed

+16
-25
lines changed

requirements.txt

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,4 +6,5 @@ azure-search-documents
66
python-dotenv
77
pillow
88
azure-ai-evaluation
9-
ipykernel
9+
ipykernel
10+
rich

zava_product_upload.py

Lines changed: 3 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -132,19 +132,10 @@ def create_index(index_client: SearchIndexClient, index_name: str) -> None:
132132
index_client: Azure Search Index Client
133133
index_name: Name of the index to create
134134
"""
135-
print(f"Checking if index '{index_name}' exists...")
136-
137-
existing_indexes = [index.name for index in index_client.list_indexes()]
138-
139-
if index_name in existing_indexes:
140-
print(f"Index '{index_name}' already exists. Deleting it...")
141-
index_client.delete_index(index_name)
142-
print(f"Index '{index_name}' deleted.")
143-
144-
print(f"Creating index '{index_name}'...")
135+
print(f"Creating or updating index '{index_name}'...")
145136
index_schema = create_product_index_schema(index_name)
146-
index_client.create_index(index_schema)
147-
print(f"Index '{index_name}' created successfully.")
137+
index_client.create_or_update_index(index_schema)
138+
print(f"Index '{index_name}' created/updated successfully.")
148139

149140

150141
def generate_embeddings(openai_client: OpenAI, products: list[dict[str, Any]]) -> None:

zava_search_keyword.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,6 @@
1717
)
1818

1919
search_query = "25 foot hose"
20-
search_query = "water plants efficiently without waste"
2120

2221
results = search_client.search(search_text=search_query, top=5)
2322

zava_search_reranker.py

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -23,17 +23,18 @@
2323
credential=azure_credential,
2424
)
2525

26-
search_query = "100 foot hose that wont break"
26+
search_query = "100 foot hose that won't break"
27+
2728
search_vector = openai_client.embeddings.create(
2829
model=os.environ["AZURE_OPENAI_EMBEDDING_DEPLOYMENT"],
2930
input=search_query).data[0].embedding
3031

31-
results = list(search_client.search(
32+
results = search_client.search(
3233
search_query,
3334
top=5,
3435
vector_queries=[
3536
VectorizedQuery(vector=search_vector, k_nearest_neighbors=50, fields="embedding")],
3637
query_type="semantic",
37-
semantic_configuration_name="products-semantic-config"))
38+
semantic_configuration_name="products-semantic-config")
3839

3940
render_product_results(results, f"Hybrid Search with Reranker Results for '{search_query}'", show_reranker=True)

zava_search_rrf.py

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -23,14 +23,13 @@
2323
credential=azure_credential,
2424
)
2525

26-
search_query = "100 foot hose that wont break"
26+
search_query = "100 foot hose that won't break"
2727

28-
#search_query = "water plants efficiently without waste"
2928
search_vector = openai_client.embeddings.create(
3029
model=os.environ["AZURE_OPENAI_EMBEDDING_DEPLOYMENT"],
3130
input=search_query).data[0].embedding
3231

33-
results = list(search_client.search(search_query, top=5, vector_queries=[
34-
VectorizedQuery(vector=search_vector, k_nearest_neighbors=50, fields="embedding")]))
32+
results = search_client.search(search_query, top=5, vector_queries=[
33+
VectorizedQuery(vector=search_vector, k_nearest_neighbors=50, fields="embedding")])
3534

3635
render_product_results(results, f"Hybrid RRF search results for '{search_query}'")

zava_search_vector.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -23,13 +23,13 @@
2323
credential=azure_credential,
2424
)
2525

26-
search_query = "water plants efficiently without waste"
27-
search_query = "100 foot hose that wont break"
26+
search_query = "100 foot hose that won't break"
27+
2828
search_vector = openai_client.embeddings.create(
2929
model=os.environ["AZURE_OPENAI_EMBEDDING_DEPLOYMENT"],
3030
input=search_query).data[0].embedding
3131

32-
results = list(search_client.search(None, top=5, vector_queries=[
33-
VectorizedQuery(vector=search_vector, k_nearest_neighbors=50, fields="embedding")]))
32+
results = search_client.search(None, top=5, vector_queries=[
33+
VectorizedQuery(vector=search_vector, k_nearest_neighbors=50, fields="embedding")])
3434

3535
render_product_results(results, f"Vector search results for '{search_query}'")

0 commit comments

Comments
 (0)